基于深度学习的模型,例如经常性神经网络(RNNS),已经应用于各种序列学习任务,取得了巨大的成功。在此之后,这些模型越来越多地替换对象跟踪应用程序的经典方法,用于运动预测。一方面,这些模型可以通过所需的更少建模捕获复杂的对象动态,但另一方面,它们取决于参数调谐的大量训练数据。为此,我们介绍了一种用于在图像空间中产生无人机(UAV)的合成轨迹数据的方法。由于无人机,或者相反的四轮压力机是动态系统,它们不能遵循任意轨迹。通过UAV轨迹实现对应于高阶运动的最小变化的平滑度标准的先决条件,可以利用规划侵略性的四轮机会飞行的方法来通过一系列3D航点产生最佳轨迹。通过将这些机动轨迹投影,该轨迹适合于控制二次调节器,实现图像空间,实现了多功能轨迹数据集。为了证明合成轨迹数据的适用性,我们表明,基于RNN的预测模型,在生成的数据上训练,可以在真实的UAV跟踪数据集上优于经典的参考模型。评估是在公开的反UAV数据集完成的。
translated by 谷歌翻译
在诸如对象跟踪的应用中,时间序列数据不可避免地携带缺失的观察。在基于深度学习的模型的成功之后,对于各种序列学习任务,这些模型越来越替换对象跟踪应用中的经典方法,以推断对象的运动状态。虽然传统的跟踪方法可以处理缺失的观察,但默认情况下,大多数深度同行都不适合这一点。迄今为止,本文介绍了一种基于变压器的方法,用于在可变输入长度轨迹数据中处理缺失的观察。通过连续增加所需推理任务的复杂性,间接地形成模型。从再现无噪声轨迹开始,该模型然后学会从嘈杂的输入中推断出来的轨迹。通过提供缺失的令牌,二进制编码的缺失事件,该模型将学习进入缺少数据,并且Infers在其余输入上调整完整的轨迹。在连续缺失事件序列的情况下,该模型则用作纯预测模型。该方法的能力在反映原型对象跟踪方案的综合数据和实际数据上进行了证明。
translated by 谷歌翻译
在诸如跟踪之类的任务中,时间序列数据不可避免地携带缺失的观察。虽然传统的跟踪方法可以处理缺失的观测,但经常性的神经网络(RNNS)旨在在每一步中接收输入数据。此外,RNN的当前解决方案,例如省略缺失的数据或数据归档,不足以解释所产生的不确定性。迄今为止,本文介绍了一种基于RNN的方法,其提供了用于运动状态估计的完整时间过滤周期。卡尔曼滤波器启发方法,可以处理缺少的观察和异常值。为了提供完整的时间过滤周期,扩展了基本RNN以考虑其精度以考虑更新当前状态而采取观察和相关的信念。生成参数化分布以捕获预测状态的RNN预测模型与RNN更新模型组合,这依赖于预测模型输出和当前观察。通过提供具有屏蔽信息的模型,二进制编码的缺失事件,模型可以克服标准技术的限制来处理缺失的输入值。模型能力在反映了原型行人跟踪方案的合成数据上证明了模型能力。
translated by 谷歌翻译
Markowitz mean-variance portfolios with sample mean and covariance as input parameters feature numerous issues in practice. They perform poorly out of sample due to estimation error, they experience extreme weights together with high sensitivity to change in input parameters. The heavy-tail characteristics of financial time series are in fact the cause for these erratic fluctuations of weights that consequently create substantial transaction costs. In robustifying the weights we present a toolbox for stabilizing costs and weights for global minimum Markowitz portfolios. Utilizing a projected gradient descent (PGD) technique, we avoid the estimation and inversion of the covariance operator as a whole and concentrate on robust estimation of the gradient descent increment. Using modern tools of robust statistics we construct a computationally efficient estimator with almost Gaussian properties based on median-of-means uniformly over weights. This robustified Markowitz approach is confirmed by empirical studies on equity markets. We demonstrate that robustified portfolios reach the lowest turnover compared to shrinkage-based and constrained portfolios while preserving or slightly improving out-of-sample performance.
translated by 谷歌翻译
A critical step in sharing semantic content online is to map the structural data source to a public domain ontology. This problem is denoted as the Relational-To-Ontology Mapping Problem (Rel2Onto). A huge effort and expertise are required for manually modeling the semantics of data. Therefore, an automatic approach for learning the semantics of a data source is desirable. Most of the existing work studies the semantic annotation of source attributes. However, although critical, the research for automatically inferring the relationships between attributes is very limited. In this paper, we propose a novel method for semantically annotating structured data sources using machine learning, graph matching and modified frequent subgraph mining to amend the candidate model. In our work, Knowledge graph is used as prior knowledge. Our evaluation shows that our approach outperforms two state-of-the-art solutions in tricky cases where only a few semantic models are known.
translated by 谷歌翻译
Using robots in educational contexts has already shown to be beneficial for a student's learning and social behaviour. For levitating them to the next level of providing more effective and human-like tutoring, the ability to adapt to the user and to express proactivity is fundamental. By acting proactively, intelligent robotic tutors anticipate possible situations where problems for the student may arise and act in advance for preventing negative outcomes. Still, the decisions of when and how to behave proactively are open questions. Therefore, this paper deals with the investigation of how the student's cognitive-affective states can be used by a robotic tutor for triggering proactive tutoring dialogue. In doing so, it is aimed to improve the learning experience. For this reason, a concept learning task scenario was observed where a robotic assistant proactively helped when negative user states were detected. In a learning task, the user's states of frustration and confusion were deemed to have negative effects on the outcome of the task and were used to trigger proactive behaviour. In an empirical user study with 40 undergraduate and doctoral students, we studied whether the initiation of proactive behaviour after the detection of signs of confusion and frustration improves the student's concentration and trust in the agent. Additionally, we investigated which level of proactive dialogue is useful for promoting the student's concentration and trust. The results show that high proactive behaviour harms trust, especially when triggered during negative cognitive-affective states but contributes to keeping the student focused on the task when triggered in these states. Based on our study results, we further discuss future steps for improving the proactive assistance of robotic tutoring systems.
translated by 谷歌翻译
We present Mu$^{2}$SLAM, a multilingual sequence-to-sequence model pre-trained jointly on unlabeled speech, unlabeled text and supervised data spanning Automatic Speech Recognition (ASR), Automatic Speech Translation (AST) and Machine Translation (MT), in over 100 languages. By leveraging a quantized representation of speech as a target, Mu$^{2}$SLAM trains the speech-text models with a sequence-to-sequence masked denoising objective similar to T5 on the decoder and a masked language modeling (MLM) objective on the encoder, for both unlabeled speech and text, while utilizing the supervised tasks to improve cross-lingual and cross-modal representation alignment within the model. On CoVoST AST, Mu$^{2}$SLAM establishes a new state-of-the-art for models trained on public datasets, improving on xx-en translation over the previous best by 1.9 BLEU points and on en-xx translation by 1.1 BLEU points. On Voxpopuli ASR, our model matches the performance of an mSLAM model fine-tuned with an RNN-T decoder, despite using a relatively weaker sequence-to-sequence architecture. On text understanding tasks, our model improves by more than 6\% over mSLAM on XNLI, getting closer to the performance of mT5 models of comparable capacity on XNLI and TydiQA, paving the way towards a single model for all speech and text understanding tasks.
translated by 谷歌翻译
The polynomial kernels are widely used in machine learning and they are one of the default choices to develop kernel-based classification and regression models. However, they are rarely used and considered in numerical analysis due to their lack of strict positive definiteness. In particular they do not enjoy the usual property of unisolvency for arbitrary point sets, which is one of the key properties used to build kernel-based interpolation methods. This paper is devoted to establish some initial results for the study of these kernels, and their related interpolation algorithms, in the context of approximation theory. We will first prove necessary and sufficient conditions on point sets which guarantee the existence and uniqueness of an interpolant. We will then study the Reproducing Kernel Hilbert Spaces (or native spaces) of these kernels and their norms, and provide inclusion relations between spaces corresponding to different kernel parameters. With these spaces at hand, it will be further possible to derive generic error estimates which apply to sufficiently smooth functions, thus escaping the native space. Finally, we will show how to employ an efficient stable algorithm to these kernels to obtain accurate interpolants, and we will test them in some numerical experiment. After this analysis several computational and theoretical aspects remain open, and we will outline possible further research directions in a concluding section. This work builds some bridges between kernel and polynomial interpolation, two topics to which the authors, to different extents, have been introduced under the supervision or through the work of Stefano De Marchi. For this reason, they wish to dedicate this work to him in the occasion of his 60th birthday.
translated by 谷歌翻译
In this work, we demonstrate the offline FPGA realization of both recurrent and feedforward neural network (NN)-based equalizers for nonlinearity compensation in coherent optical transmission systems. First, we present a realization pipeline showing the conversion of the models from Python libraries to the FPGA chip synthesis and implementation. Then, we review the main alternatives for the hardware implementation of nonlinear activation functions. The main results are divided into three parts: a performance comparison, an analysis of how activation functions are implemented, and a report on the complexity of the hardware. The performance in Q-factor is presented for the cases of bidirectional long-short-term memory coupled with convolutional NN (biLSTM + CNN) equalizer, CNN equalizer, and standard 1-StpS digital back-propagation (DBP) for the simulation and experiment propagation of a single channel dual-polarization (SC-DP) 16QAM at 34 GBd along 17x70km of LEAF. The biLSTM+CNN equalizer provides a similar result to DBP and a 1.7 dB Q-factor gain compared with the chromatic dispersion compensation baseline in the experimental dataset. After that, we assess the Q-factor and the impact of hardware utilization when approximating the activation functions of NN using Taylor series, piecewise linear, and look-up table (LUT) approximations. We also show how to mitigate the approximation errors with extra training and provide some insights into possible gradient problems in the LUT approximation. Finally, to evaluate the complexity of hardware implementation to achieve 400G throughput, fixed-point NN-based equalizers with approximated activation functions are developed and implemented in an FPGA.
translated by 谷歌翻译
Originating from cooperative game theory, Shapley values have become one of the most widely used measures for variable importance in applied Machine Learning. However, the statistical understanding of Shapley values is still limited. In this paper, we take a nonparametric (or smoothing) perspective by introducing Shapley curves as a local measure of variable importance. We propose two estimation strategies and derive the consistency and asymptotic normality both under independence and dependence among the features. This allows us to construct confidence intervals and conduct inference on the estimated Shapley curves. The asymptotic results are validated in extensive experiments. In an empirical application, we analyze which attributes drive the prices of vehicles.
translated by 谷歌翻译